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ABSTRACT

If a point g of S has the property that each neighborhood ofgcontains points x
and y such that the segment xy is not contained by S, ¢ is called a point of local
nonconvexity of S. Let Q denote the set of points of local nonconvexity of .S.
Tietze’s well known theorem that a closed connected set S in a linear topological
space is convex if Q=1 is generalized in the result: If S is a closed set in a lin-
ear topological space such that S ~ Q is connected and | Q| = n< 00, then S is the
union of n -+ 1 or fewer closed convex sets. Let k be the minimal number of
convex sets needed in a convex covering of S. Bounds for & in terms of m and
n are obtained for sets having property P,, and |Q| = n.

A set S having at least m = 2 points is said to be m-convex, with the property of
m-convexity referred to as property P,, if among each m points of S there exists
at least one pair such that the segment joining that pair lies in S. Valentine’s
theorem [5] that a closed 3-convex set in E? is the union of three or fewer convex
sets (a result obtained for a special class of closed 3-convex sets in E” by E. Buchman
[1]), has sparked research in several directions. The general concept of m-convexity
is discussed fully in the authors’ paper [2], where it is shown that Valentine’s
result for m = 3 does not generalize in any simple way to higher values of m and
the uncertainty of a bound for the number of convex subsets needed to cover a
closed planar m-convex set is discussed.

Research on the problem ultimately involves the concept of ‘‘local convexity”’
in sets. We define a weak type of local convexity, one which is meaningful in any
linear topological space (see [6], pp. 48-49, Definition 4.2): A point x in a set S
is called a point of local convexity of S (alternatively, S is locally convex at x) if
there exists some neighborhood U of x such that if ye SN U and ze SN U then
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the segment yz lies in S. S is locally convex iff it is locally convex at each point,
and if S fails to be locally convex at some point g in S, that point is called a point
of local nonconvexity (Inc) of S.

The classical theorem involving this concept was first proved for sets in E* by
Tietze, later extended to the following form by other authors (see [6], p. 49
Theorem 4.4; a new proof involving the concept of m-convexity appears in [2]):

Tierze’s THEOREM. In any linear topological space, a closed, connected
locally convex set is convex.

The chief motive for the work done in this paper was to obtain an upper bound
on the minimum number of convex sets required in a convex covering of S. The
authors were early able to establish that if a closed set is m-convex and has one
Inc point, then it is the union of m — 1 or fewer convex sets. Slightly more effort
produces the bound (m — 1) [(n + 1)/2] for closed m-convex sets having n points
of local nonconvexity. In seeking results for sets having more than one Inc point
the following generalization of Tietze’s theorem was found, interesting by itself:

THEOREM. If S is a closed set in a linear topological space and Q is the set
of Inc points of S, with |Q| =n< oo and S~ Q connected, then S is either
convex or planar, and in either case S is the union of n+ 1 or fewer convex sets.

We shall assume throughout that the space is Hausdorff, and all results are
valid for linear topological spaces unless otherwise stated. We shall use essen-
tially the terminology and notation established in [6]. For convenience we denote
the segment, open segment, and half open segments joining x and y by xy,
(xy) = xy ~ {x} ~ {y}, (xy] = xy ~ {x}, and [xy) = xy ~ {y}, respectively. The
line determined by x and y (the set {Ax + py: A + p = 1}) will be denoted L(x, y),
the ray from x to y (the set {Ax +py:A+p=1, p = 0}) will be designated
R(x, y), and the angle A(x, y,z) is defined as the set R(y, x) UR(y,z). The x-star
of S, also called the local kernel of S at x, is denoted S, and is defined to be the
set consisting of all points y in S which can see x via S (that is, xy = S). Thus,
S is starshaped with respect to x iff S = S,. We denote the convex hull of a set
S by conv S, with the topological interior, closure, and boundary of S being
written as int S, ¢l S, and bd S, respectively. Finally, we denote the set of Inc
points of S (as defined above) by Q. We shall assume throughout that Q is of
finite cardinality, and that S is closed and connected.

The authors wish to extend their appreciation to the referee for the improve-
ments effected by his suggestions.
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1. Sets having finitely many points of local nonconvexity

Tietze’s theorem provides the main tool for proving the results needed to
generalize it. Some of our results are to be found in Valentine [7] and have been
included here for the sake of completeness. We begin with the following key
result:

LemMA 1. If xy U yz < S and no point of Q lies in conv {x,y,z} ~ xz, then
conv{x,y,z} < S.

Proof. Choose any point ue(xy) and ve(yz). Since conv{u,v,y} < conv
{x,y,2} ~xz, conv{u,v,yyNQ = @. Let T be the component of S Nconv
{u,v, y} containing uy U yv. Since an Inc point of T would clearly be an Inc point
of S, T is closed, connected, and locally convex. By Tietze’s theorem T is convex.
Hence uv = T < S for all ue(xy) and ve(yz). Since S is closed, this implies
conv {x,y,z} = S, as desired.

If a connected set is locally convex, standard arguments show it is polygonally
connected. Thus it is clear that any component of S~ @ is polygonally connected.
This observation is used in proving the next lemma, a result which appears also
in [7]; note that our proof applies to any closed connected set S with a nonempty
set of Inc points.

LEMMA 2. S= U, oS,

Proor. Let xe S, x¢0Q, and let W be the component of S ~ Q containing x.
Since QNcl W # ¢, the result follows immediately if W (and thus cl W) is
starshaped with respect to x, so assume there is some point x’ € W which x cannot
see via W. By the polygonal connectedness of W there exist points y and z in W
such that xy U yz = W but xz ¢ W. It follows by Lemma 1 that Q' = @ N conv
{x,y,2} # 9. Consider N, conv {x, y,u}, where the intersection is taken over all
u € yz such that xu N Q' # . Since S is closed, Q' is compact and hence there
exists ugeyz such that N, conv{x,y,u} =conv{x,y,up}, and there exist
go€Q’ Nxug. Since conv {x, y,up} = S, xgo = Sand xe S, .

We say that S is locaily starshaped iff for each point x € S there exists a relative
neighborhood of x in S which is starshaped with respect to x. (Thus, any open set
in a topological linear space is locally starshaped.) The fact that a set S having
the properties assumed for this section is locally starshaped may be obtained in
the following manner: Since there is no problem for a point x of local convexity,
let x =gq,€Q and suppose there is a net {x;};.p converging to g, such that
x;q, & S for allie D. Since x;€ U, S, and Q is finite, x,q, is frequently in S for



Vol. 10, 1971 LOCAL NONCONVEXITY 199

some g,€Q, q, #q,. Let U be a neighborhood of g, devoid of points of
Q ~ {q,}. Then some subnet {x,}; .5 is such that x;e U and x;q, = S for all
jeE. Choose a point ye(q,q,) such that q,y = U, let z=4q; + ug, be any
point on (g,y), with A+ u=1 and 0 <1 <1, and define z; = Ax; + pq,. Since
lim; .z z;=2z¢Q and S ~ Q is locally starshaped z;z is eventually a subset of S
and z;€ U. By Lemma 1 there is a point q; € conv {x;, z;, z} or ;e conv {x;,4,,z},
q;#4,, and since for certain non-negative «;, f;, y; with o; + 8, +79;=1,
q;=o;x;+ B;z; +9;2, or g;=a;x; + B,q( +y;z, it may be assumed without
loss of generality that for some non-negative n, v with # + v =1, lim;_zq,=nq,
+ vz = q, for some g5 € Q. But then g3 € g,z < U, and by definition of U, ¢, =g¢,.
But since {g;} converges to g3, q; is eventually in U, a contradiction. (Simple
examples in E? show that S need not be locally starshaped if Q is not finite.)
Since connected, locally starshaped sets are obviously polygonally connected,

we have proved

LemMa 3. S is locally starshaped and polygonally connected. Moreover,
each component of S ~ Q is locally convex, and its closure is locally starshaped
and polygonally connected.

We shall now consider the case when S ~ Q is connected. It is interesting that
S is convex in certain cases by virtue of its dimension.

LemMa 4. If S~ Q is connected and S does not lie in a plane, then S is

convex.

Proor. Consider any two points x and y in S~ Q and let x = x4,---,x, = y
be the vertices of a polygonal arc P in S ~ Q joining x and y having the minimal
number of vertices, and assume k = 2. Then no three consecutive vertices of P
are collinear, and we may define i as the largest integer such that x,, ---, x; lie in
the plane = of xg, Xy, X5, 2 < i < k. Suppose i < k; then no three of the points
X;-2, X;_1, X;» and x4, are collinear, and since x;_;x;N @ = @, it follows that
conv {x;_y, x; u}N Q@ = @ for some u e x;x;,;. By Lemma 1, conv{x _,x,u}
= S ~ Q. For all but finitely many ve xu, conv{x;_,,x,_;,0}N Q = @ which
implies conv{x;_,,%;_,v} =S ~ Q. Therefore, the points x4+, x;_,, v,
X;+ 1,5 X determine a polygonal arc in S ~ @ joining x and y having only k — 1
vertices, contradicting the minimal property of P. Hence i = k and P lies in =,

Since S ~ Q does not lie in 7 there exists a point ze S ~ Q ~ 7, and by con-
sidering a polygonal arc in S ~ @ with vertices y = x;, X341, ", X; = 2z, there is
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a maximal j 2 k such that x;en. Let F be the 3-dimensional flat containing
PU X1 U UX;x;4 =P’ and let S’ be the component of SN F containing
P’. 1t is clear that S’ is closed, and if Q' is the set of Inc points of §’, Q" = Q;
moreover, P’ = S’ ~ Q’. Thus some plane 7’ exists which is parallel to =n, cuts
X;X;+, at some point z’, and is sufficiently close to n that no member of Q' lies
strictly between n and =’. It may be proved by induction that z'x;, z'x;_4,-,
z'x, all lie in S’ (applying Lemma 1). Again by Lemma 1, xz’ U z'y < S’ implies
xy = 8’ = 8, a contradiction. Hence, k=1 and S is convex.

The next lemma yields a topological property of S which will be useful later.

LeMMA 5. If S is finite-dimensional and S~ Q is connected, then S =
cl(int S), the interior being taken relative to the minimal flat containing S ~ Q.

Proor. The statement is obvious if S, and therefore S ~ @, is convex. Other-
wise, Q is nonempty and by Lemma 4, S is planar. Since S is closed we have
cl(intS) = cIS = S. To reverse the inclusion we have only to show that S~ Q <
cl(int S), since S =cl(S~ Q). Suppose x e S~Q, and let U be a neighbourhood of x
such that SN U is convex. If dim(S N U) = dimS, then xecl(intS). If
dim(S NU) < dim S, then necessarily dim(SNU) =1 and dim S =2 since S is connec-
ted. Since SNU is convex SNU is free of points of 0, and since SNU is a segment,
ray, or line we may take the maximal convex subset T of S containing SNU
and T will be a segment, ray, or line. But then T would be in all cases a nontrivial
component of S ~ Q, contradicting the assumption that S ~ @ is connected.

We now consider the situation when Q contains a single element g and S ~ Q
= S ~ {q} is connected. Then Lemma 4 implies that S is a subset of E. A sequence
of observations will further show S to be, in this case, the union of exactly two
convex sets. Choose x€S, yeS such that xy ¢ S; by Lemma 2, xqNqy < S,

and we define T to be the closure of the geometric interior of the angle A(x, 4, y)
(see Fig. 1).

S,NT ~{q}

Fig 1.
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(1) No point ze SN T ~ {q} can see both x and y via S, for Lemma 1 would
imply that xy < S.

(2) ;T ~{q} and S, " T ~ {q} are convex sets (by the same reasoning as
in (1)), and SNT=(S,NT)U(S,NT).

(3) By (1) S,NT ~{q} and S,NT ~ {q} are disjoint; accordingly, there
exists a separating line L through g such that if H, and H, are the open half-planes
determined by L, with xeH, and yecl H, or xecl H, and ye H,, then
S;NTcclHyand S, NT <cl H,.

(4) Since g is not a cut-point of S there exists a weSNL~T (for, if

SUL~T= ¢ then (SNH,)U(S,NT ~ {q}) would be a closed and open
proper subset of S ~ ¢). It follows that S = S,, since Lemma 1 implies that any
polygonal arc in S ~ {q} joining w with a point u € S ~ {¢q} may be reduced to uw.
(5) If u and v belong to SN H, then uwUwr < S and Lemma 1 implies
uv = S N Hy; similarly for S N H,.
Thus, we have proved:

LeMMA 6. If S~ Q is connected and Q consists of exactly one point, S is
planar and is the union of the two convex sets cl(S N H,) and cl(S " H,), as
defined above.

It will be convenient to introduce the following terminology for sets in E?:
point g€ S is called an essential point of local nonconvexity of S iff for every
neighborhood U of g there is at least one component W of S N U ~ {q} such
that g is an Inc point of cl W; an Inc point that is not essential is called an ines-
sential point of local nonconvexity. Let us now consider the local behavior
of S at an essential Inc point g. Let D be a closed circular disk centered at g
which is sufficiently small to exclude all other Inc points of S, and such that
SN D is starshaped with respect to g. The closures of the components of

(a)

Fig. 2.
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S ND~{q} can have at most one Inc point, and in that event, it must be g;
moreover, at most one of these components can have g as Inc point. Hence,
since g is essential, precisely one component W of S N D ~ {4} has g as an Inc
point of its closure, and the closures of all other components (if they exist) are
convex by Tietze’s theorem (see Fig. 2-a). By the observations which led to
Lemma 6, ¢l W is the union of two convex sets defined by a (weak) separating line
L. We call line L a separating line at q. (Fig. 2-b illustrates the case when ¢ is
inessential.)

The following argument will show that if S ~ Q is connected and IQ[ > 0,
then S always has at least one essential Inc point: Let ¢, -+, ¢, be the Inc points
of S, assumed to be inessential for sake of argument. Since S is planar, let D = D,
be a closed circular disk of radius r, >0 centered at an Inc pointg =¢q,, 1 £k <n
(without loss of generality we may assume r{ = --- = r, =r), and put C = bd D.
For sufficiently small r, S ~ D is connected, and the closures of the components
W, (ae A) of SND ~ {q} are convex (since g is inessential). Since S ~ {g} is
connected each W, meets C. Let K, < C be a (closed) circular arc on C of minimal
length that contains W, N C, with endpoints x, and y,. The arc K, must be of
length A(K,) < nr or else geint S. Define B = {o: A(K,) < nr}, and for aeB
let W, denote the component of W, ~ x,y, whose closure contains gq. Then if

T=\ daw,

xeB

the set S ~ T will not have g as an Inc point. Doing this for all sufficiently small
r and at each Inc point g, yields sets T, (r) such that

cl (S ~ O Tk(r)\) =50r), O<r<a,

k=1
has no Inc points and is connected. Thus {S(r): 0 < r < a} is a directed family of
closed, connected, locally convex sets, thus convex, and consequently
cl(Vg<r<q S(r)) = S is convex, a contradiction. This proves

Lemma 7. If S~ Q is connected and IQ’ > 0, then S is planar and has at
least one essential Inc point.

2. Monotone sequences of sets having finite convex coverings

A result which will expedite later proofs is of a fundamental nature. Suppose
we have a monotone increasing sequence of sets S, =S, < --- = §; = --- each of
which is the union of m convex sets (m fixed). An obvious conjecture is that the
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union S = U;2,S; is itself the union of m convex sets (a similar statement con-
cerning the intersection of a monotone decreasing sequence of sets may be made).
These propositions are valid under varying restrictions and seem not to be so
readily proved without them. Both propositions are true if it is required that S
and each S, are topologically closed, and if the space is second countable.

We make use of the Hausdorff limit and a well known theorem in topology
which states that any sequence of subsets of a second countable topological
space contains a topologically convergent subsequence (see C. Kuratowski [4],
p. 246, Theorem VIII). It is an easy matter to show that if the sequence consists
of convex sets the set to which the sequence converges is convex (one uses here the
fact that the definition of the Hausdorff limit demands it to be topologically
closed). The second countability assumption requires that the linear space be at
least separable and metrizable (the two propositions are therefore valid for

separable normed linear spaces). We have, then, the following lemma:

LEMMA 8’. Each sequence of convex sets in a separable and metrizable
linear topological space contains a subsequence which converges topologically
to a closed convex set.

For convenience, we combine the two propositions we mentioned into a single
lemma; N will denote the set of positive integers.

LemMma 8. Let {S;};.y be a nondecreasing sequence of sets in a separable
and metrizable linear topological space, each of which is the union of m convex

sets. Then the set
S=c {Js

ieN
is also the union of m convex sets. [If the sequence is non-increasing, then the set

S=[)els;

ieN
is the union of m convex sets.]

Proof. By hypothesis we may suppose that for each ie N
m m
Si = U Cli I:C]Si = U ij:l’

ji=1 j=1
where C;; is convex, j = 1,-+-,m. Consider the sequence {C;,};.y. By Lemma 8’
there exists a subsequence {C;,};.5,, N; = N, which converges to a closed convex
set C,. Consider the sequence {C;,};.y,; it has a subsequence {C,};y,, N2 = Ny,
converging to a closed convex st C,. Continuing inductively one can find infinite
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subsets of N, Ny o N, o »+ o N,,, such that, for each j, the subsequence {C;;};.n :
converges to a closed convex set C;. It follows that

lim {C;;}=C;, j=1,--,m.

ieN,
Since it is clear that S = cl(U;.y,S) [S =N,y c1S:], it is a routine matter to

prove that in each case S = U7.,C;.

Remark. The referee has communicated a proof of Lemma 8 extending it to
general sequences of sets in a vector space over an ordered field.

3. A generalization of Tietze’s theorem
We now generalize the result of Lemma 6 to obtain the theorem promised

earlier.

THEOREM 1. Let S be a closed set in a topological linear space, with Q the
set of points of local nonconvexity of S, and S ~ Q connected. Then if Q has
n < co members, S may be expressed as the union of n+ 1 or fewer closed
convex sets. Moreover, if S is not convex then S is planar and is the union of
n' + 1 or fewer closed convex sets, where n’ < n is the number of essential Inc

points of S.

Proor. It is obvious we need only prove the assertion concerning planar sets.
The proof will proceed by induction on n’; Lemma 6 implies the case n’ = 1, for,
by the method used in the proof of Lemma 7 the connectedness of S ~ Q can be
shown to imply that n’ = n = 1. Let g be one of the essential Inc points of S.
We prove first that no loss of generality results in assuming the existence of more
than one separating line at g. Let D be the disk used previously to define the
separating line L at ¢, and let W be the component of S N D ~ {q} whose closure
has ¢ as Inc point. Since cl W is the union of two convex sets, one on each side
of L, there exist sequences {x;};.y and {y;};cy in bd S converging to g such that
(xy)NCcW = @ and T;., =T, where T; is the geometric interior of the
angle A(x,,q,y). Then if S; = cI[S ~ (W N T)], Si+; > S; so that {S;} is a non-
decreasing sequence of sets whose union is S. Moreover, each set S; obviously
has g as an essential Inc point and has more than one separating line at g. In view
of Lemma 8, it then suffices to prove that each S; is the union of n’ + 1 convex sets.

Since Q is finite it is possible to choose a separating line L at g such that LN Q
= g. Take a sequence {L;};.y of lines parallel to L, all on the same side of L,
such that the width of the closed parallel strip T; bounded by L; and L is 1/i.



Vol. 10, 1971 LOCAL NONCONVEXITY 205

Let W be the component of S N D ~ {gq} defined in the preceding paragraph, and
denote by W; the closure of the component of S NintT; which contains
WNint T;. For all sufficiently large i, T; N Q = {q}; thus it follows that W, is
convex, and W,,, c W, for all i sufficiently large. The set S; = cl(S ~ W;) more-
over contains one less essential Inc point than S, and since S~W; =S ~ W;.,
the sequence {S;} is non-decreasing, with S = cl(U; .xS). Theset Q; = Q ~ {g}
contains the set of essential Inc points of S;. For sufficiently large i, S; bas n’ — 1
essential Inc points. If S; ~ Q; is connected, then by the induction hypothesis S;
is the union of (n’ — 1) + 1 = n’ convex sets. If S; ~ Q, is not connected, then it
obviously has only two components, say S;; and S,;. The sets cl S; and ¢l S,; have
nY;, resp. n;; essential Inc points, with n{; + n,; = n’ — 1, and in this case S; is the
union of ny{ + ny; + 2 =(n’ ~ 1) + 2 = n' + 1 convex sets. Thus, in either case, S;
may be expressed as the union of n’ + 1 convex sets and by Lemma 8, S is the
union of n’ + 1 convex sets.

RemaRrk. If in the above proof S; ~ Q; remains connected for all sufficiently
large i, then S is the union of n’ convex sets. This happens necessarily if g may
be chosen on the boundary of some bounded component of the complement of
S ~ Q. The result may then be extended to the case when there are k > 0 bounded
components in the complement of S~Q by using induction on k and the same
methods as in the preceding proof.

CoRrOLLARY 1. If S is a closed subset of E* having n’ essential Inc points, with
S ~ Q connected and k= 0 bounded components in the complement of S ~ Q,
then S is the union of n’ —k + 1 or fewer closed convex sets.

Sets in the plane may be easily constructed for which the bounds in the theorem
and corollary are realized for each n. See Fig. 3 for an illustration of several
special cases; note that the class of examples shown supports the conjecture that
for all closed planar sets S with S ~ Q connected, n’ = 3(n + 1).

n=11, n=8 n=7, n=4 n=10, n"=8, k=2
(Union of 9 convex sets) (Union of 5 convex sets) (Union of 7 convex sets)
Fig. 3.
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4. Bounds tor sets having property P,

In seeking conditions which together with m-convexity imply the existence of a
convex covering of S by m—1 convex subsets, a likely formula for success would
seem to be the study of the nature (cardinality or structure) of the set of Inc
points. Indeed, Lemma 6 is highly suggestive; a general property known for some
time is that for closed sets with | Q | = n = 1, m-convexity implies the existence of a
convex covering by m — 1 subsets [proved in Guay’s doctoral thesis, Michigan
State University (196?)]; note that such a covering of S is characteristic of m-
convexity since the converse is true. For the case m = 3 the same implication holds
for closed planar sets if n is even or infinite (Valentine [5]), or if the dimension
of S is = 3, the interior of the kernel of S is nonempty, and Q< int conv S
(Buchman [1]). The five-pointed star with interior is a counterexample for the
case m = 3, n = 5. A student of one of the authors, Mr. John Legge, constructed a
counterexample for the case m = 4, n = 4, of which the illustration in Fig. 4 is the
authors’ version, and the example of the triangle and semicircles on the sides
provides a counterexample for the case m = 3, n = 3. Note that in each of these
examples S ~ Q is connected. Thus, the following lemma is a best possible resuit.

n=4, m=4

Fig. 4.

Lemma 9. If S is closed, S ~ Q is connected, and n £ 2, then S is m-convex
iff it is the union of m — 1 convex sets.

Proor. The proposition is trivial if either n =0 or m = 2; hence we may
assume S is planar (Lemma 4). Since Theorem 1 proves the assertion for all
mz=4if n=2and for m = 3 if n = 1, the only case remaining is m =3, n = 2.
Theorem 3 of Valentine in [5] now applies and asserts that S is the union of two
convex sets.

The next proposition allows us to establish the preceding result for closed sets
in general.



Vol. 10, 1971 LOCAL NONCONVEXITY 207

LemMMA 10. Let S be a closed m-convex set with Q finite and nonempty. If no
component of S ~ Q is one-dimensional and W is any component different from
S~ Q, then clW is exactly k-convex [k-convex but not (k — 1)-convex] for
some k£m — 1, and cl(S ~ clW) is (m — k + 1)-convex.

ProoF. Let {W,:oe A} denote the family of components of S~ Q, with
W = W,, the given component. Observe that S = U, ., clW, and cl(S ~ cl W)
= U, 24l W,. Suppose there exist points x;,---,x,_; in cIW such that
xx;¢clW for 1Si<j<k-1, k=2, and that x;, -, X;4,-, are points in
clS ~clW such that xx; ¢ cl(S~clW) for ksi<j<k+r—2,rz2 Let
W; denote a component of S ~ Q whose closure contains x;fori=1,---, k +r — 2,
with W, =..-=W,_, =W and W, W for i = k. Since cl W and cl(S ~ cl W)
are closed there exist neighborhoods U; of x; for each i, with U;nW = @ for
izk, such that for any u,eU, uu;d¢clW for 1Si<j<k-1 and
uu; ¢ cl(S~clW) for k<i<j<k+r—2, provided both k>2 and r > 2;
if k=2 or r = 2 (when either ¢l W or cl(S ~ cl W) is convex) simply choose U,
or U, as any neighborhood containing x; or x;, respectively. Now cl W, is either
planar or convex. If cl W, is planar, Lemma 5 implies that cl W; = cl(int W)
(relative to the plane of W)), so there exists a point y;e U; Nint W; and thus, a
circular disk V; about y; as center exists such that V; « W; N U,. If cl W, is convex
let m; be any plane passing through x;. Then n; NclW; is a two-dimensional
convex set containing x; and there exists y;e U, Nint(r; Ncl W;) and a circular
disk V; about y, as center such that V; = W; N U; (since y; may be chosen outside
Q and V;NQ = @ may then be assumed). Now choose points p;eint V; for
1<iZ<k+r—2 as follows: p,eintV, is chosen arbitrarily. After having
chosen points p;eintV; for 1 £j < i, choose p;eint V; ~ U, .o U ;<;L(q, p;). The
points thus chosen clearly satisfy p;p;NQ = @Gfor 1 S i<j<k-+r-2.

Thus, if for some i <j p;p; =S, then p;p; =S~ Q, and therefore p,e W,
implies p;p; = W, cclW,; so that j>i=k and p;p; ¢ cl(S ~ cIW). Hence, at
least one point we W lies on p;p; and hence p;w =W or p; € W, a contradiction. It
follows that for i #j, p,p; ¢ S. By the m-convexity of S,

k+r—2<m-1,
or k<m—r+1. Since r=2, clW is exactly k-convex with k <m — 1, and
cl(S ~clW)is r-convex with r <m —k + 1.

THEOREM 2. A closed set S in a topological linear space having at most two
Inc points is m-convex iff it is the union of m — 1 convex sets.
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Proor. The proof will be by induction on m. If S ~ Q has a one-dimensional
component W, which must itself be convex, denote by L the line that contains W,
and let W be the component of S N L that contains W. Then W is convex, and
it is clear that cl(S ~ W) is (m — 1)-convex and hence is the union of m — 2
convex sets, so that S=W uUcl(S ~ W) is the union of m — 1 convex sets.
Thus, assume that S ~ Q has no one-dimensional components, and let W be any
component of S~ Q different from S~ Q (if S~ Q is connected Lemma 9
makes the desired assertion). By Lemma 10, cIW is k-convex forsome2 < k S m—1
and cl(S ~ cl W) is (m — k + 1)-convex. Hence, by the induction hypothesis S is
the union of

k-D+m—-k=m-1
or fewer convex sets.
A simple induction argument may be used to establish the following generaliza-

tion of Theorem 2:

THEOREM 3. If S is a closed m-convex set in a topological linear space and S
has n points of local nonconvexity, where 0 <n < o, then S is the union of k
convex sets, where

kgon—n[";ll

Proor. For n <2, Theorem 3 reduces to Theorem 2. Assuming n = 3, let
W,, -, W, be the components of S ~ 0 (Lemma 10 implies r < o0). By Lemma 10
clW, is mqconvex where 2<m;<m—1 and XZ{(m;—D)=m—1. If Q,
denotes the set of Inc points of clW;=S,, it follows that I Q,.l =n;<n and
S; ~ Q;is connected. If r = 1 the set S is planar and for m = 3 Valentine’s theorem

[5] gives us
3§n§2[n+1]_( _1)[n;—1]’
while for m = 4 Theorem 1 implies

kgm4<3vgqg(—nr+1.

Finally, if r > 1 the induction hypothesis implies that S is the union of

é? [n+1 g r;1=m_nr;1

k

1A
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convex sets.

The referee has pointed out that for planar sets a much better bound may be

obtained:

THEOREM 4. If S is a closed m-convex subset of E* having n essential Inc

points, then S is the union of k convex sets, where
k=m+n-1.
PrROOF. As in the previous theorem let W, -, W, be the components of S ~ Q.
If r = 1, Theorem 1 implies that S is the union of
k£n+1£m+n-1

convex sets. For r > 1, the induction hypothesis implies that S; =clW, is the
union of m; + n, — 1 convex sets. Since no point g€ Q can be an essential Inc
point for more than one set S; we have X.:=;n, = n and therefore

i=1

12
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