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ABSTRACT 

If a point q of S has the property that each neighborhood ofqeontains points x 
and y such that the segment xy is not contained by S, q is called a point of local 
nonconvexity of S. Let Q denote the set of points of local nonconvexity of S. 
Tietze's well known theorem that a closed connected set S in a linear topological 
space is convex if Q = t~ is generalized in the result: I f  S is a closed set in a lin- 
ear topological space such that S ,.~ Q is connected and [ QI = n < 09, then S is the 
union of  n + 1 or fewer closed convex sets. Let k be the minimal number of 
convex sets needed in a convex covering of S. Bounds for k irt terms of m and 
n are obtained for sets having property P,. and IQ[ = n. 

A set S having at least m __> 2 points is said to be m-convex ,  with the proper ty  o f  

m-convexity referred to as p r o p e r t y  P,,,  if among  each m points o f  S there exists 

at least one pair such that  the segment joining that  pair lies in S. Valentine's 

theorem [-5] that  a closed 3-convex set in E 2 is the union of  three or fewer convex 

sets (a result obtained for a special class o f  closed 3-convex sets in E" by E. Buchman 

[-1]), has sparked research in several directions. The general concept  o f  m-convexity 

is discussed fully in the au thors '  paper [-2], where it is shown that  Valentine's 

result for m = 3 does not  generalize in any simple way to higher values o f  m and 

the uncertainty o f  a bound  for the number  o f  convex subsets needed to cover a 

closed planar m-convex set is discussed. 

Research on the problem ultimately involves the concept  o f  " local  convexi ty"  

in sets. We define a weak type of  local convexity, one which is meaningful  in any 

linear topological  space (see [6], pp. 48--49, Definition 4.2): A point  x in a set S 

is called a po in t  o f  local convex i t y  o f  S (alternatively, S is loca l ly  convex  at  x)  if 

there exists some ne ighborhood U of  x such that  if y ~ S c3 U and z e S c3 U then 
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the segment yz  lies in S. S is locally convex iff it is locally convex at each point, 

and if S fails to be locally convex at some point q in S, that point is called a point 

of local nonconvexi ty  (lnc) of S. 

The classical theorem involving this concept was first proved for sets in E" by 

Tietze, later extended to the following ibrm by other authors (see [6], p. 49 

Theorem 4.4; a new proof  involving the concept of m-convexity appears in [2]): 

TIETZE'S THEOREM. In any linear topological space, a closed, connected 

locally convex set is convex. 

The chief motive for the work done in this paper was to obtain an upper bound 

on the minimum number of convex sets required in a convex covering of S. The 

authors were early able to establish that if a closed set is m-convex and has one 

lnc point, then it is the union of m - 1 or fewer convex sets. Slightly more effort 

produces the bound (m - 1) [(n + 1)/2] for closed m-convex sets having n points 

of local nonconvexity. In seeking results for sets having more than one lnc point 

the following generalization of Tietze's theorem was found, interesting by itself: 

THEOREM. If S is a closed set in a l inear topological space and Q is the set 

o f  lnc points o f  S, with [ Q I = n < o~ and S ,,~ Q connected, then S is either 

convex or planar,  and in either case S is the union of  n +  1 or f ewer  convex sets. 

We shall assume throughout that the space is Hausdorff, and all results are 

valid for linear topological spaces unless otherwise stated. We shall use essen- 

tially the terminology and notation established in [-6]. For convenience we denote 

the segment, open segment, and half open segments joining x and y by xy ,  

(xy)  -- x y  ,,~ {x} ~ {y}, (xy]  -- x y  ,,, {x}, and [xy)  -- x y  ~ {y}, respectively. The 

line determined by x and y (the set {2x + ~ty: 2 + # = 1}) will be denoted L(x,  y), 

the ray from x to y (the set {2x + py: 2 + p = 1, # > 0}) will be designated 

R(x,  y), and the angle A(x,  y ,z)  is defined as the set R(y,  x) [..JR(y, z). The x-star  

of S, also called the local kerne l  o f  S at x,  is denoted Sx and is defined to be the 

set consisting of all points y in S which can see x via S (that is, x y  ~ S). Thus, 

S is starshaped with respect to x iff S = Sx. We denote the convex hull of a set 

S by cony S, with the topological interior, closure, and boundary of S being 

written as int S, cl S, and bd S, respectively. Finally, we denote the set of lnc 

points of S (as defined above) by Q. We shall assume throughout that Q is of 

finite cardinality, and that S is closed and connected. 

The authors wish to extend their appreciation to the referee for the improve- 

ments effected by his suggestions. 
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1. Sets having finitely many points of local nonconvexlty 

Tietze's theorem provides the main tool for proving the results needed to 

generalize it. Some of our results are to be found in Valentine [.7] and have been 

included here for the sake of completeness. We begin with the following key 

result: 

LEMMA 1. If xy  U yz  c S and no point o[ Q lies in cony {x, y, z} ,,, xz,  then 

cony {x, y, z} ~ S. 

Proof. Choose any point u ~ (xy )  and v ~ (yz). Since cony {u,v,y) c cony 

{ x , y , z } , , ~ x z ,  c o n v { u , v , y } n Q =  ~. Let T be the component of S n c o n v  

{u, v, y} containing uy w yr. Since an lnc point of T would clearly be an lnc point 

of S, T is closed, connected, and locally convex. By Tietze's theorem T is convex. 

Hence uv = T ~ S for all u ~ ( x y )  and v s ( y z ) .  Since S is closed, this implies 

conv {x, y, z} = S, as desired. 

If a connected set is locally convex, standard arguments show it is polygonally 

connected. Thus it is clear that any component of S ~ Q is polygonally connected. 

This observation is used in proving the next lemma, a result which appears also 

in [7]; note that our proof applies to any closed connected set S with a nonempty 

set of lnc points. 

LEMMA 2. S = ~-,/q 6 QS4" 
PRoof. Let x 6 S, x ¢ Q, and let W be the component of S ,-~ Q containing x. 

Since Q n c l  w # ¢, the result follows immediately if W (and thus cl W) is 

starshaped with respect to x, so assume there is some point x '  ~ W which x cannot 

see via W. By the polygonal connectedness of W there exist points y and z in W 

such that xy u yz c W but xz  eg W.  It follows by Lemma 1 that Q' - Q N cony 

{x, y, z} # ¢. Consider n,, cony {x, y, u}, where the intersection is taken over all 

u s yz such that xu N Q' ~ 9J. Since S is closed, Q' is compact and hence there 

exists u o ~ yz such that n,,  cony {x, y, u} = c o n v  {x, y, Uo}, and there exist 

qo ~ Q' n xu o. Since cony {x, y, u0} ~ S, xqo ~ S and x ~ Sqo. 

We say that S is locaily starshaped ifffor each point x ~ S there exists a relative 

neighborhood of x in S which is starshaped with respect to x. (Thus, any open set 

in a topological linear space is locally starshaped.) The fact that a set S having 

the properties assumed for this section is locally starshaped may be obtained in 

the following manner: Since there is no problem for a point x of local convexity, 

let x = ql s Q and suppose there is a net {x l }~o  converging to ql such that 

xiql ¢ S for all i t  D. Since xi ~ U~,oS, and Q is finite, x~q2 is frequently in S for 
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some q 2 e Q ,  q2 ~ q t .  Let U be a ne ighborhood of  ql devoid of  points  o f  

Q ~ {ql}. Then some subnet  {xj}j~E is such that  x~.~ U and xiq 2 c S for  all 

j E E .  Choose  a point  Y~(qlq2)  such that  qxY ~ U, let z = 2 q ~  +Pq2 be any 

point  on (qay), with 2 + # = 1 and 0 < 2 < 1, and define zj = 2xj + Pqz. Since 

limj ~ ~ zj = z ¢ Q and S ~ Q is locally s tarshaped zjz is eventually a subset of  S 

and z~ ~ U. By L e m m a  1 there is a point  qi ~ cony {xj, z j, z} or qj E conv {xj, ql ,  z}, 

qj ~ q l ,  and since for  certain non-negat ive ~i, //J, VJ with c~j + / / j  + ?j = 1, 

qi = ~jxj + / ? j z j  + ?jz, or  q~ = ~ x j  + fliqx + Vjz, it m a y  be assumed without  

loss of  generality that  for some non-negat ive t/, v with t / +  v = 1, l i m j ~ q j . = t / q ~  

+ vz = q3 for  some q3 ~ Q. But then q3 ~ q~z ~ U, and by definition of  U, q3 - -q l .  

But since {qi} converges to q3, q j" is eventually in U, a contradict ion.  (Simple 

examples in E 2 show that  S need not  be locally s tarshaped if Q is not  finite.) 

Since connected,  locally s tarshaped sets are obviously polygonal ly  connected,  

we have proved 

LEMMA 3. S is locally starshaped and polygonally connected. Moreover, 

each component of S ,,, Q is locally convex, and its closure is locally starshaped 

and polygonally connected. 

We shall now consider the case when S ~ Q is connected.  I t  is interesting that  

S is convex in certain cases by virtue of  its dimension.  

LENMA 4. I f  S , ~ Q  is connected and S does not lie in a plane, then S is 

convex. 

PROOF. Consider  any two points  x and y in S ~ Q and let x = Xo,- . - ,x  k = y 

be the vertices of  a polygonal  arc P in S ~ Q joining x and y having the minimal  

number  of  vertices, and assume k > 2. Then no three consecutive vertices of  P 

are collinear, and we may  define i as the largest integer such that  Xo, ..., xl lie in 

the plane ~ of  x o, x~, x2, 2 _< i -< k. Suppose i < k; then no three of  the points  

xi-2,  x i -1 ,  xg, and xi+ ~ are collinear, and since x i _ l x i n  Q = f~, it follows that  

conv{xi_a ,  xi, u}fh Q = ~ for  some uexixi+ 1. By L e m m a  1, c o n v { x _ l , x : , u }  

S ~  Q. For  all but  finitely m a n y  vex iu ,  conv{xi_2,x,_a,v}C3 Q = ¢ which 

implies c o n v { x i _ 2 , x ~ _ l , v } c S ' , ' Q .  Therefore,  the points  Xo,. . . ,xi_z,  v, 

x~+ ~, ..., Xk determine a polygonal  arc in S ~ (2 joining x and y having only k - 1 

vertices, contradict ing the minimal  proper ty  of  P. Hence i = k and P lies in re. 

Since S ~ (2 does not  lie in ~ there exists a point  z e S ,-~ Q ~ ~, and by con- 

sidering a polygonal  arc in S ~ Q with vertices y = Xk, Xk+l, "",Xt = Z, there is 
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a maximal j > k such that x] e re. Let F be the 3-dimensional flat containing 

P td XkXk+l t.) "'" t3 XjXj+I = P'  and let S '  be the component of S n  F containing 

P ' .  It is clear that S '  is closed, and if Q' is the set of  lnc points of  S' ,  Q' c Q; 

moreover, P '  c S '  ~ Q'. Thus some plane n '  exists which is parallel to re, cuts 

x ix]+ 1 at some point z ' ,  and is sufficiently close to 7z that no member of  Q' lies 

strictly between n and W. It may be proved by induction that z 'x j ,  z ' x j _ l , . . . ,  

z ' x  o all lie in S '  (applying Lemma 1). Again by Lemma 1, xz '  to z ' y  c S'  implies 

xy  c S '  c S, a contradiction. Hence, k = 1 and S is convex. 

The next lemma yields a topological property of  S which will be useful later. 

LEMMA 5. I f  S is finite-dimensional and S, , ,  Q is connected, then S = 

cl(int S), the interior being taken relative to the minimal  f lat  containing S ,,, Q. 

PROOF. The statement is obvious if S, and therefore S ~ Q, is convex. Other- 

wise, Q is nonempty and by Lemma 4, S is planar. Since S is closed we have 

cl(int S) c cl S = S. To reverse the inclusion we have only to show that S ~ Q 

cl (int S), since S = cl (S ~ Q). Suppose x e S ~ Q, and let U be a neighbourhood of x 

such that S n  U is convex. I f  d i m ( S n  U ) =  d i m S ,  then x ec l ( in tS) .  I f  

dim(S n U) < dim S, then necessarily dim(S n U) = 1 and dim S = 2 since S is connec- 

ted. Since S n U is convex S c5 U is free of points of Q, and since S n U is a segment, 

ray, or line we may take the maximal convex subset T of S containing S n U 

and Twill  be a segment, ray, or line. But then Twould  be in all cases a nontrivial 

component  of  S ,-, Q, contradicting the assumption that S ,~ Q is connected. 

We now consider the situation when Q contains a single element q and S ,-~ Q 

= S ,-~ {q} is connected. Then Lemma 4 implies that S is a subset of  E 2. A sequence 

of observations will further show S to be, in this case, the union of exactly two 

convex sets. Choose x e S ,  y e s  such that xydg S; by Lemma 2, x q n q y  c S, 

and we define T to be the closure of the geometric interior of the angle A(x, q, y) 

(see Fig. 1). 

L ~ , . , . ,  tq } 
Fig 1. 
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(1) No point z ~ S n T ,-~ (q) can see both x and y via S, for Lemma 1 would 

imply that xy  ~ S. 

(2) S x r3 T ,-, (q)  and Sy t'3 T ,-~ (q) are convex sets (by the same reasoning as 

in (1)), and S ( 3 T = ( S  x ~ T )  L~(Syr3T) .  

(3) By (1) Sx (3 T ,,~ (q)  and Sy (3 T--~ (q) are disjoint; accordingly, there 

exists a separating line L through q such that if H~ and H 2 a r e  the open half-planes 

determined by L, with x ~ H ~  and y ~ c l  H E or x ~ c l  H 1 and y ~ H 2 ,  then 

S x n T c cl H 1 and Sy ~ T c c l  H E. 

(4) Since q is not a cut-point of S there exists a w ~ S  (~L,-~ T (for, if 

S u L ,-~ T = gJ then (S ( 3 H 1 ) u  (S~ (~ T ,,~ (q)) would be a closed and open 

proper subset of  S ,,~ q). It  follows that S = Sw since Lemma 1 implies that any 

polygonal arc in S ~ (q) joining w with a point u ~ S ~ (q) may be reduced to uw. 

(5) I f  u and v belong to S n H  1 then u w u w v c S  and Lemma 1 implies 

uv ~ S n H~ ; similarly for S n H 2. 

Thus, we have proved: 

LEMMA 6. If S ,,~ Q is connected and Q consists o f  exact ly  one point, S is 

p lanar  and is the union o f  the two convex sets cl(S (3H1) and c l (S  ~ H 2 ) ,  as 

defined above. 

It will be convenient to introduce the following terminology for sets in E2 :  

point q ~ S is called an essential point of local nonconvexity of  S iff for every 

neighborhood U of q there is at least one component  W of S t'3 U ,-, (q) such 

that q is an lnc point of  cl W; an lnc point that is not essential is called an ines- 

sential point of  local nonconvexity. Let us now consider the local behavior 

of S at an essential lnc point q. Let D be a closed circular disk centered at q 

which is sufficiently small to exclude all other lnc points of  S, and such that 

S n D  is starshaped with respect to q. The closures of the components of 

~a) (b) 
Fig. 2, 
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S C~ D ,,~ {q} can have at most one lnc point, and in that event, it must be q; 

moreover, at most  one of these components can have q as lnc point. Hence, 

since q is essential, precisely one component W of S n D ,-~ {q) has q as an lnc 

point of  its closure, and the closures of all other components (if they exist) are 

convex by Tietze's theorem (see Fig. 2-a). By the observations which led to 

Lemma 6, cl W is the union of two convex sets defined by a (weak) separating line 

L. We call line L a separat ing  line at q. (Fig. 2-b illustrates the case when q is 

inessential.) 

The following argument will show that if S ~ Q is connected and I Q[ > 0, 

then S always has at least one essential Inc point: Let qt,  ..., q,, be the Inc points 

of  S, assumed to be inessential for sake of argument. Since S is planar, let D = D, 

be a closed circular disk of radius r k > 0 centered at an lnc point q = qk, 1 < k < n 

(without loss of  generality we may assume rl  . . . . .  r k = r), and put C = bd D. 

For  sufficiently small r, S ,,, D is connected, and the closures of  the components 

W, (~ s A) of  S c~ D ,,- {q} are convex (since q is inessential). Since S ,,~ {q} is 

connected each W, meets C. Let K ,  ~ C be a (closed) circular arc on C of minimal 

length that contains W, n C, with endpoints x, and y,. The arc K~ must be of 

length A ( K , ) <  7rr or else q e int S. Define B = {~: A ( K , ) <  7zr}, and for ~ ~ B 

Iet W" denote the component  of  W ,  ,,, x ,y~ whose closure contains q. Then if 

T =  u clW;, 
a teB  

the set S ,-, T will not have q as an lnc point. Doing this for all sufficiently small 

r and at each lnc point qk yields sets Tk(r ) such that 

cl S',~ rk ( r  - S(r),  O < r < a, 
k = l  

has no Inc points and is connected. Thus {S(r): 0 < r < a} is a directed family of 

closed, connected, locally convex sets, thus convex, and consequently 

c l ( t Jo< , -  a S(r)) = S is convex, a contradiction. This proves 

L~MMA 7. I f  S ~ Q is connected and I Q I > o, then S is p lanar  and has at  

least one essential  Inc point.  

2. Monotone sequences of sets having finite convex coverings 

A result which will expedite later proofs is of  a fundamental nature. Suppose 

we have a monotone increasing sequence of sets $1 c $2 c ... c S i c ... each of 

which is the union of m convex sets (m fixed). An obvious conjecture is that the 
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~o S union S = ~ i=  1 ~ is itself the union of m convex sets (a similar statement con- 

cerning the intersection of a monotone decreasing sequence of sets may be made). 

These propositions are valid under varying restrictions and seem not to be so 

readily proved without them. Both propositions are true if it is required that S 

and each S i are topologically closed, and if the space is second countable. 

We make use of the Hausdorff limit and a well known theorem in topology 

which states that any sequence of  subsets of a second countable topological 

space contains a topologically convergent subsequence (see C. Kuratowski [4], 

p. 246, Theorem VIII). It is an easy matter to show that if the sequence consists 

of convex sets the set to which the sequence converges is convex (one uses here the 

fact that the definition of the Hausdorff limit demands it to be topologically 

closed). The second countability assumption requires that the linear space be at 

least separable and metrizable (the two propositions are therefore valid for 

separable normed linear spaces). We have, then, the following lemma: 

LEMMA 8'. Each sequence of convex sets in a separable and metrizable 

linear topological space contains a subsequence which converges topologically 

to a closed convex set. 

For convenience, we combine the two propositions we mentioned into a single 

lemma; N will denote the set of positive integers. 

LEMMA 8. Let {Si}i, N be a nondecreasing sequence of  sets in a separable 

and metrizable linear topological space, each of  which is the union of  m convex 

sets. Then the set 

S = c l  [,.Js, 

is also the union of m convex sets. [ I f  the sequence is non-increasing, then the set 

S = 1"] cl S~ 

is the union of  m convex sets.] 

Proof. By hypothesis we may suppose that for each i • N 

j = l  j = l  

where Cij is convex, j = 1, ..., m. Consider the sequence {Ci~}i~N. By Lemma 8' 

there exists a subsequence {Cil}~N,, N 1 c N,  which converges to a closed convex 

set C1. Consider the sequence {Cn}~N~ ; it has a subsequence {Ci2}~N~, N2 = N~, 

converging to a closed convex s:t Cz. Continuing inductively one can find infinite 
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subsets of N, N 1 ~ N 2 ~ "" ~ N m ,  such that, for each j, the subsequence {Cu}i~Nj 

converges to a closed convex set Cj. It follows that 

lim {Cii} = C j, j = 1, ..., m. 
ieNm 

Since it is clear that S = c l ( U i e N , , S i )  I S  = (3i~n..clSi] , it is a routine matter to 
m prove that in each case S = t .) j=lC j. 

REMARK. The referee has communicated a proof  of Lemma 8 extending it to 

general sequences of sets in a vector space over an ordered field. 

3. A generalization of Tietze's theorem 

We now generalize the result of  Lemma 6 to obtain the theorem promised 

earlier. 

THEOREM 1. Let S be a closed set in a topological linear space, with Q the 

set of points of local nonconvexity of S, and S ,,~ Q connected. Then if  Q has 

n < oo members, S may be expressed as the union of  n + 1 or fewer closed 

convex sets. Moreover, i f  S is not convex then S is planar and is the union of  

n' + 1 or fewer closed convex sets, where n' < n is the number of essential Inc 

points of S. 

PROOF. It  is obvious we need only prove the assertion concerning planar sets. 

' .  1, for, The proof  will proceed by induction on n , Lemma 6 implies the case n'  = 

by the method used in the proof  of  Lemma 7 the connectedness of S ,-, Q can be 

shown to imply that n '  = n = 1. Let q be one of the essential lnc points of  S. 

We prove first that no loss of generality results in assuming the existence of more 

than one separating line at q. Let D be the disk used previously to define the 

separating line L at q, and let W be the component of S n D ~ {q} whose closure 

has q as lnc point. Since cl W is the union of two convex sets, one on each side 

of  L, there exist sequences {xi} i~N and {Yi}i ~N in bd S converging to q such that 

(xiyi) c3 cl W = ~ and Ti+ 1 c Ti, where T i is the geometric interior of the 

angle A(x,,q,  yi). Then if Si = c l [ S  ,-~ (W n r , ) ] ,  S~+1 ~ Si so that {S~} is a non- 

decreasing sequence of sets whose union is S. Moreover, each set S~ obviously 

has q as an essential lnc point and has more than one separating line at q. In view 

of Lemma 8, it then suffices to prove that each S~ is the union of n'  + 1 convex sets. 

Since Q is finite it is possible to choose a separating line L at q such that L c~ Q 

= q. Take a sequence {Li}~ N of  lines parallel to L, all on the same side of  L, 

such that the width of the closed parallel strip T~ bounded by Li and L is 1/i. 
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Let W be the component of S c3 D ~ {q} defined in the preceding paragraph, and 

denote by W i the closure of the component of S h i n t  T i which contains 

W n  int T i. For all sufficiently large i, T i n  Q = {q} ; thus it follows that W~ is 

convex, and Wi+l c Wi for all i sufficiently large. The set St = cl(S ~ W~) more- 

over contains one less essential lnc point than S, and since S,,~ W~ c S ~ W~+ 1, 

the sequence {S,) is non-decreasing, with S = c l ( u i  ~NS,). The set Q, = Q ,-, {q} 

contains the set of essential lnc points of S v For sufficiently large i, S~ has n' - 1 

essential lnc points. If  S~ ,,~ Qi is connected, then by the induction hypothesis Si 

is the union of  (n' - 1) + 1 = n'  convex sets. If S~ ~ Q~ is not connected, then it 

obviously has only two components, say S ,  and S2i. The sets cl Su and cl $2~ have 

n~, resp. n£~ essential Inc points, with n~ + n2'~ = n' - 1, and in this case Si is the 

union o fn l [  + n;i + 2 =(n '  - 1) + 2 = n' + 1 convex sets. Thus, in either case, Si 

may be expressed as the union of n' + 1 convex sets and by Lemma 8, S is the 

union of n'  + 1 convex sets. 

REMARK. If  in the above proof S~ ~ Qi remains connected for all sufficiently 

large i, then S is the union of n' convex sets. This happens necessarily if q may 

be chosen on the boundary of some bounded component of the complement of 

S ,~ Q. The result may then be extended to the case when there are k > 0 bounded 

components in the complement of S,-~ Q by using induction on k and the same 

methods as in the preceding proof. 

COROLLARY 1. I f  S is a closed subset of  E 2 having n' essential lnc points, with 

S N Q connected and k >  0 bounded components in the complement of S ,,~ Q, 

then S is the union of n ' - k  + 1 or fewer closed convex sets. 

Sets in the plane may be easily constructed for which the bounds in the theorem 

and corollary are realized for each n. See Fig. 3 for an illustration of several 

special cases; note that the class of examples shown supports the conjecture that 

for all closed planar sets S with S ~ Q connected, n'  > ½(n + 1). 

n : l l ,  n'= 8 
(Union of 9 convex sets) 

n = 7 ,  n ' = 4  n= lO,  n'= 8, k =2 
(Union of 5 convex sets) (Union of 7 convex sets) 

Fig. 3. 
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4. Bounds lot sets having property P,. 

In seeking conditions which together with m-convexity imply the existence of a 

convex covering of S by m -  1 convex subsets, a likely formula for success would 

seem to be the study of the nature (cardinality or structure) of  the set of  lnc 

points. Indeed, Lemma 6 is highly suggestive; a general property known for some 

time is that for closed sets with I Q I - n = 1, m-convexity implies the existence of a 

convex covering by m - 1 subsets [proved i n  Guay ' s  doctoral thesis, Michigan 

State University (1967)]; note that such a covering of S is characteristic of  m- 

convexity since the converse is true. For the case m = 3 the same implication holds 

for closed planar sets if n is even or infinite (Valentine [5]), or if the dimension 

of S is > 3, the interior of  the kernel of  S is nonempty, and Q c  int conv S 

(Buchman [1]). The five-pointed star with interior is a counterexample for the 

case m - 3, n = 5. A student of one of the authors, Mr. John Legge, constructed a 

counterexample for the case m = 4, n = 4, of which the illustration in Fig. 4 is the 

authors '  version, and the example of the triangle and semicircles on the sides 

provides a counterexample for the case m = 3, n = 3. Note that in each of these 

examples S ~ Q is connected. Thus, the following lemma is a best possible result. 

n - - 5 , m = 5  n=4, m=4 
Fig. 4. 

LEMMA 9. I f  S is closed, S ~ Q is connected, and n <= 2, then S is m-convex 

i f f  it is the union o f  m - 1 convex sets. 

PROOF. The proposition is trivial if either n = 0 or m = 2; hence we may 

assume S is planar (Lemma 4). Since Theorem 1 proves the assertion for all 

m _ > _ 4 i f n = 2 a n d f o r m _ _ > 3 i f n - - 1 ,  the only case remaining is m - - 3 ,  n = 2 .  

Theorem 3 of Valentine in [5] now applies and asserts that S is the union of two 

convex sets. 

The next proposition allows us to establish the preceding result for closed sets 

in general. 
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LEMMA 10. Let  S be a closed m-convex set with Q f ini te  and nonempty .  I f  no 

component  o f  S ,,, Q is one-dimensional  and W is any component  different f r o m  

S ~ Q, then c lW is exact ly  k-convex [k-convex but not ( k - 1 ) - c o n v e x ]  for  

some k < m - 1, and cI (S  ~ el W) is (m - k + 1)-convex. 

PROOF. Let  {W,:  c~eA} denote  the fami ly  o f  componen t s  of  S ~ Q, with 

W = W,o the given componen t .  Observe that  S = u , ~ a  cl W, and  c l (S  ~ cl W) 

= U , , , , c l  W~. Suppose  there exist points  

xix j (g cl W for 1 __< i < j =< k - 1, k > 2, and  

cl S ~ cl W such tha t  xixj  ~ cl (S ~ cl W) for  

X~, '" ,Xk_ ~ in c l W  such tha t  

tha t  Xk,"' ,Xk+r_ 2 are  poin ts  in 

k < i < j < k + r - 2 ,  r > 2 .  Let  

W s denote  a componen t  o f S  ~ Q whose closure contains  x~ for  i = 1, . . . ,  k + r - 2, 

with WI . . . . .  Wk-1 = W and Wi ~ W for  i > k. Since cl W and  c l (S  ,-~ cl W) 

are closed there exist ne ighborhoods  U i of  xs for  each i, with U g n W  = ~ for  

i__>k, such that  for  any u, eUi ,  uiu i ¢ c l W  for  l < i < j < k - 1  and 

u,uj ¢ c l (S  ~,, c l W )  for  k < i < j  < k + r -  2, p rov ided  bo th  k > 2 and r > 2; 

if  k = 2 or  r = 2 (when either cl W or  cl (S ~ cl W) is convex) s imply choose  U 1 

or  U k as any n e i g h b o r h o o d  conta in ing Xl or  Xk, respectively.  N o w  cl W~ is ei ther 

p lanar  or  convex. I f  cl Wi is p lanar ,  L e m m a  5 implies tha t  cl W~ = cl (int Ws) 

(relative to the plane of  Ws), so there exists a po in t  y~ E Ui ca int Ws and thus,  a 

circular  d isk  V s abou t  Ys as center  exists such that  Vi c W s n U s. I f  cl W s is convex 

let rr i be any p lane  passing th rough  x~. Then gi ca cl W i is a two-d imens iona l  

convex set conta in ing  x~ and  there exists Yi e U~ ~ int (hi n cl W~) and a circular  

d isk  Vi abou t  Yi as center  such tha t  Vs c W~ ca Us (since),~ may  be chosen outs ide 

Q and  V i ca Q = ~ m a y  then be assumed).  N o w  choose  points  P i • i n t  Vs for  

l < i < k + r - 2  as fo l lows:  p l e i n t V  1 is chosen arbi t rar i ly .  Af te r  having 

chosen poin ts  pj  ~ int  Vj for  1 < j < i, choose  Ps e int V~ ~ u ,  ~ e u j < sL(q, Pi)" The 

points  thus chosen clearly satisfy P~Pi n Q = ~ for  1 < i < j < k + r - 2. 

Thus,  if  for some i < j  PiPj ~ S, then pgpj ~ S ~ Q, and  therefore  P i •  W~ 

implies PiPj ~ Wi ~ cl W i so tha t  j > i > k and  PiP.i ¢ c l  (S ~ cl W). Hence,  at  

least one po in t  w • W lies on p~pj and  hence p~w ~ W or Pi • W, a cont radic t ion .  I t  

fol lows tha t  for  i # j ,  p,pj ~: S. By the m-convexi ty  o f  S, 

k + r - 2 < m - 1 ,  

or  k < m - r + 1. Since r > 2, c l W  is exactly k-convex with k < m - 1, and 

cl (S ~ cl W) is r -convex with r < m - k + 1. 

THEOREM 2. A closed set S in a topological l inear space having at most two 

lnc points is m-convex i f f  it is the union of  m - 1 convex sets. 
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PROOF. The proof  will be by induction on m. I f  S ,,~ Q has a one-dimensional 

component  W, which must itself be convex, denote by L the line that contains W, 

and let if" be the component  of  S n L that contains W. Then if" is convex, and 

it is clear that cl (S ~ if') is (m - 1)-convex and hence is the union of m - 2 

convex sets, so that S - - i f "  u cl(S ~ if') is the union of m -  1 convex sets. 

Thus, assume that S ~ Q has no one-dimensional components, and let W be any 

component  of  S ,~ Q different from S ,,~ Q (if S ~ Q is connected Lemma 9 

makes the desired assertion). By Lemma 10, clW is k-convex for some 2 < k < m - 1 

and cl (S ,-~ cl W) is (m - k + 1)-convex. Hence, by the induction hypothesis S is 

the union of 

( k -  1) + ( m -  k ) - -  m -  1 

or fewer convex sets. 

A simple induction argument may be used to establish the following generaliza- 

tion of Theorem 2: 

THEOREM 3. If  S is a closed m-convex set in a topological linear space and S 

has n points of local nonconvexity, where 0 < n < c~, then S is the union of  k 

convex sets, where 

PROOF. For n--< 2, Theorem 3 reduces to Theorem 2. Assuming n > 3, let 

W1," ' ,  W, be the components of  S ~ Q (Lemma 10 implies r < oo). By Lemma 10 

clW~ is mi-convex where 2-< mi<= m - 1  and ~ i i - ~ ( m ~ - l ) - - m - 1 .  I f  Qi 

denotes the set of  lnc points of cl W i = Si, it follows that I Q~I - n~ =< n and 

Si ~ Qi is connected. I f  r = 1 the set S is planar and for m = 3 Valentine's theorem 

[5] gives us 

while for m > 4 Theorem 1 implies 

Finally, if r > 1 the induction hypothesis implies that S is the union of 

k <  ~, ( m i - 1 )  n/-k---~ < ]~ (m i - l )  = ( m - l )  n 1 
i = 1  i = 1  
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convex sets. 

The referee has po in ted  out  tha t  for  p lanar  sets a much  bet ter  b o u n d  may  be 

ob ta ined  : 

THEOREM 4. I f  S is a closed m-convex subset  o f  E 2 having n essential  lnc 

points,  then S is the union o f  k convex sets, where 

k < m + n - 1 .  

PROOF. As  in the  previous  theorem let W1, ---, Wr be the componen t s  o f  S ~ Q. 

I f  r = 1, Theorem 1 implies tha t  S is the union  o f  

k < n + l < m + n - 1  

convex sets. F o r  r > 1, the induct ion  hypothesis  implies  tha t  Si = cl Wi is the 

union  o f  mi + n, - 1 convex sets. Since no po in t  q e Q can be an  essential  lnc 

po in t  for  more  than  one set Si we have ~ - ' i n i  = n and  therefore  

i = r  

k <  ~, ( m i + n i - 1 ) = m + n - 1 .  
i=1 
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